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THE CALCULATION OF TWO- AND THRER-DIMENSIONAL
INVISCID UNSTRADY FLOWS BY THE METHOD OF CHARACTERISTICS

by
Harry 8Sauerwein, Jr.

ABSTRACT

The problem of the numerical solution by the method of
characteristics of the two- and three-dimensional flow of an
inviscid nonequilibrium gas is formulated. PFor unsteady flows
the method is limited, for practical reasons, to the solution
of hypersonic or other flows which have short transient times,
The specific details of the finite difference network to be
used and the associated finite difference equations are
presented. It was found that numerical instability was
possible with certain previously proposed networks. An
existing stadbility criterion was found to apply to the multi-
dimensional method of charscteristics and this criterion was
used to synthesize a stable finite difference network.

High speed digital computer programs are presented which
perfora the numerical calculation. Because the operating
speed and storage capacity of the larger and faster computers
availadble today does not allow the solution of the most
general problem in a reasonable length of time, it was
necessary to limit the programmed calculation to the two-
dimensional unsteady flow of a perfect gas. Rather long
programs which require large amounts of input data and produce
even larger amounts of output data are the results of the

programming effort.

Four example cases of the flow about a circular cylinder
with its axis perpendicular to a Mach five free stream are
presented. The cylinder is held steady, symmetrically and
asymmetrically warped to an elliptic cross-section and
oscillated in a direction normal to the free stream. These

11



cases indicate that the solution of multi-dimensional flows
by.tho method of characteristics is dboth practical and
feasible, With the substitution of higher order interpolation
for the linear interpolation used in this initial study,
accurate and useful results for engineering problems can

be obtained.

The extension of the programmed procedures to the most
general problem which can be solved with the method of
characteristics is discussed and the steps required to
extend the procedure are indicated.
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CHAPTER 1
INTRODUCTION

This study was initiated with the purpose of analyzing
inviscid hypersonic flow about three-dimensional bodies in
unsteady motion. In the course of this investigation, a more
general method has been considered which applies to all inviscid
unsteady flows, not just hypersonic flows. There are practical

limitations on the application of the method, however.

The study of hypersonic flow is mathematically nonlinear
in most cases, perhaps by definition. A review of the litera-.
ture reveals that because of this nonlinearity, theoretical study
is very difficult., Many approximations are usually made so that
the mathematical problem becomes amenable to analytical methods.
See, for example, the book by Hayes and Probateinl. Many times
it is very difficult to evaluate the effect of the approxima-
tions on the results of the analysis after the approximate
solution has been obtained. When unsteady hypersonic flow is
considered, the problems are even more challenging. Here, by
unsteady hypersonic flow, we mean truly unsteady flow where the
"quasi-steady' approximation which simplifies certain unsteady
hypersonic analysis is not valid. Also, without exact solutioms

against which these approximate theories can be checked, the

1 Superscripts refer to the reference numbers listed in the

section entitled References.



errors introduced by them are very difficult, if not impossible
to determine. Hencel a means of exactly calculating unsteady

hypersonic flow is very desirable.

The question which faces us then is, what is the best method
for determining exact solutions to unsteady hypersonic flows? A
method is sought to solve the general nonlinear equations which
describe the flow of an inviscid nomequilibrium gas. It is
probably safe to assume that a general analytical solution can
not be found because of the complicated nature of the equations.
It must be concluded then, that the only hope lies in the direc-

tion of a numerical solution.

4

The general, unsteady flow of a gas is governed by a set of
hyperbolic, quasi-linear partial differential equations. In
general, there are two methods for numerically solving such
systems of equations. One method replaces th: derivatives in
the original set of equations with finite differences, and
seeks to solve numerically, this set of difference equationms.
This approach, we might call the finite difference method. A
second procedure first writes the equations in characteristic
form to somewhat simplify them and then utilizes finite dif-
ferences to approximate the derivatives. The numerical solu-
tion is obtained by integration in the characteristic surfaces,
hence, this approach is referred to as the method of character-
fstics. A discussion and examples of these two basic approaches
are given in Chapters 15 and 16 of the book edited by Ralston
and W11£2,



The finite difference methods might be further subdivided

into standard methods and methods utilizing artificial vie-
cosity. In the latter approach, an extra artificial viscosity
term (or in some cases, the real viscosity term) is added to the
equations such that free boundaries, e.g. shock waves, are auto-
matically determined in the solution. This approach has been
studied by von Neumann and Richt-lyer3, Laxa, and Lax and
Wendroffs among others. Thus, in general there are three basic
numerical approaches which might be utilized in attacking the
problem. Hartree6 has proposed a method which combines the
standard finite difference approach with the method of charac-
teristics mainly to obtain the solution on an evenly spaced
grid while still taking advantage of the characteristics. Such
hybrid approaches usually have some of the disadvantages of the
original methods and quite often require more computations than

the original methods, so that they are not considered here.

The advantages and disadvantages of each of the three basic
approaches are compared in the following table. Some of the
properties given in the table were obtained from the books by
Fox7 (Chapters 17, 18, 26, 27 and 28), Forsyth and Hasova (parts
1l and 4), Richtnyer9 and Collatzlo (Chapter IV, Part 5) while

some of the estimates are the author's.



Comparison of Possible Methods of Solution

Standard Finite
Difference Approach

l.

specially treated
as discontimuities

2,
specially treated

How are fixed

3.

Rulerian or
Lagrangian

&

yes

3.

three space dimen-
sions and time

Finite Difference
Approach with

Artificial Viscosity

How are free boundaries handled?

automatically handled
with artificial vis-
cosity and by retaining
consegvative properties
in thé difference
equations

boundaries handled?

specially treated, but
some difficulty can
arise because the arti-
ficial viscosity in-
creases the order of
the equations and extra
boundary conditions are
available which are not
easy to specify in some
cases

Lagrangian in some
problems

Is a stability criterion required?

yes

How many independent variables can be

more suited to two

independint variables,
but can be generalised

Method of
Characterigtics

specially treated
as discontinuities

specially treated

What formulation of the equations is usually preferred?

Eulerian, usually
utilized

yes, but it is
usually simplified
by knowledge of the
location of the
characteristic
surfaces

treated?

three space dimen-
sions and time



Finite Difference
Standard Finite Approach with Method of
Difference roach Artificial Viscosity ICharacteristics

6. How difficult is the machine programming task?

somevhat complicated | simplest most difficult
because boundaries

must be treated

specially

7. How much computing time is required?

about the same as about the same as potentially the
finite difference standard finite quickest method
with artificial difference approach

viscosity

8. How much machine storage is required?

about the same as about the same as slightly more than
finite difference standard finite the other two
with artificial difference approach methods

viscosity

9. On what sort of grid is the solution obtained?

evenly spaced evenly spaced characteristic
grid, probably

will require inter-
olation of the

inal result
10. What is the accuracy of the results?
intermediate least accurate in that | potentially the
accuracy the free boundaries are | most accurate,

not precisely located also this method
and errors can be intro- of solution most
duced by not properly closely follows
specifying the extra the physical model
boundary conditioms
introduced by the
artificial viscosity




From the estimates and properties given in the above table,
it is possible to draw some conclusions about the utility of
applying the methods to various types of problems. The first
property listed in the table shows a basic difference between
the approach utilizing artificial viscosity and the other two
approaches. This is the major advantage of the artificial vis-
cos ity method, but it is at the expense of points 2 and 10.
Hence, if the problem to be solved involved a complicated inter-
action of shock waves, for example, this might be the best method
to utilize. However, if only simple shock wave configurations
were to be considered, perhaps one of the other two methods
might best be utilized. On points 1, 2, 3, and 5 the standard
finite difference approach (SFDA) is similar to the method of
characteristics (MOC), while on points 6, 8, and 9 the SFDA
seems to have the advantage, and on points 4, 7, and 10 the MOC

seems to be p-eferred.

The approach to be adopted here must take into account the
type of problems that are to be solved. In this study, we are
interested generally in determining the external hypersonic flow
about bodies performing unsteady motions. At least initially,
and in a majority of the problems to be considered, the bodies
are simple enough that rather simple shock configurations are
encountered. Hence, the approach utilizing artificial viscosity
is not required. The choice between the SFDA and the MOC is not
as simple. As has been indicated, the SFDA has advantages on
three points and the MOC has three, while four can be considered



equal. Thus, the individual points must be considered to choose
the better method of approach. The SFDA is favored by points 6,
8, and 9, which mainly apply to the ease of writing the program
and applying the method to a computing machine. The MOC, on the
other hand, is favored by points 4, 7, and 10 which are advan-
tages of the finished working method. So, 1f ease of writing
the program and initially applying the method is most important,
it would appear that the SFDA is better, but if extra initial
effort can be devoted to programming,a better working method
would seem to result from the MOC. It is felt that, because
once a machine program is written it can be used over and over
to solve many problems, it is worth an extra initial effort to
write a more accurate and quicker program. Hence, the MOC is
adppted in this study. Note that this choice is based on some
rather crude estimates and the validity of these conclusions
ultimately, can be judged only after working programs have been

written and are compared.

The MOC was first proposed by Hassaull in 1899 and is some-
times referred to as the Method of Massau. The method was adopted
to solve hyperbolic problems in fluid mechanics, perhaps first
in 1929 by Prandtl and Busemannlz. The MOC was first used to
solve two-dimensional irrotational supersonic steady flows and
one-dimensional unsteady flows of a perfect gas. These calcula-
tions could be made by hand and in part graphically. Necessarily,
the first aéplications of the method had to be limited to sim-

plified problems in two independent variables, because of the



impossibility of doing more ambitiéus problems with hand cal-
culations. In the 1940's and early 1950's, when electromic
digital computers first became available, the MOC was developed
sitensively for more general problems involving two independent

13 and Hcycru”ls discuss this work and give

variables. Ferri
an extensive list of references. The rotational flows of real
gases became amenable to solution by the MOC when computers
were used and in some cases, were merely a matter of the routine
application of general computer programs. In the late 1950's
and early 1960's, couputér development had increased the storage
capacity and speed of operation of the machines to the point
that more ambitious problems could be attempted with the MOC.
Problems involving three independent variables amd noneqdilib-
rium thermodynamics are now being attempted for the first time.
These newv advances in computer technology have made it possible

to at least consider the most general types of problems which

can be solved with the MOC.

Briefly, the MOC is used to solve Cauchy problems for a set
of quasi-linear, hyperbolic partial differential equations. Data
are given on an initial surface* together with boundary con-
ditions on the flow field, such as solid body surfaces and shock

waves. The solution is them cltained on an adjacent surface by

* The termimology of a problem involvi.ng.thru independent
variables is used here to emphasize that problems of more
than two independent variables can be handled while still
avoid the mere general, but rrb&pa confVsing termin-
ology of four independent variables, e.g. hypersurfaces.
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numerical solution of the equations written in characteristic
form with the partial derivatives replaced by finite dif-
ferences. The solution on this new surface is then taken as
the initial data and the process repeated to obtain the solution
on the next adjacent surface. In this way, the solution is
obtained by marching in space or time until the desired solu-
tion is obtained or until the complete region specified by

the initial data has been determined.

A review of the ligerature of the MOC for two independent
variables cannot ' be given here,as the volume of such litera-
ture is enormous. An attempt will be made here to 1list only
the most recent work on the MOC which involves problems which
include more than two independent variables and those that con-

sider nonequilibrium thermodynamics.

The work on problems with more than two independent varia-
bles can be divided into two groups. One group, theoretically
détudies the problems and formulates them, and in some cases even
goes s0 far as to write the finite difference equations, while
the second group includes work which has gone on to actually
do some numerical calculations on digital computers. The for-
mer group is by far the larger of the two groups, while the
latter has less than ten members to be sure. The reason for
this, is that much time and effort are required to carry a
formulation through to a working computer program or to ac-
complish the calculation by hand in simple cases. Thus, many
studies of the MOC have been terminated after formulating the



problem. Included in the first group are the basic works of

Thornh11116 and Coburn and Dolph17. Sauer18

19 20
21

» Clippinger and

have also made contributions to the theory.
22

and Holt
and Saini

& much more general problem which has the particular problem
23

Giese
Coburn have used tensor analysis to formulate
considered here as a special case. Most recently, Fowell
and Sauorza have published work in this area. In the second
group of papers, which did some actual numerical calculatioms,
the first few studies were done when computers were not readily
available so that they involved simplified calculations which
could be accomplished by hand (by hand calculations, we also
mean with the aid of desk calculators). These initial calcula-
tions include the work of Hocckclzs, Ferrar126, and Bruhn and
Hnack27. Later work by Butler28 29

using digital computers. Results obtained with the latest

and Tsung™ " was accomplished

generation of computers have just begun to appear. Morretti

30 have published some recent results. More and more

et.al.
actual calculations are being carried out at the present time
on more and more ambitious problems because of the increased

versatility of digital computers.

The study of hypersonic flows must allow for the pos-
sibilic? of high temperature real-gas effects and nonequilibrium
thermgdynamics caused by the high temperatures, and perhaps low
densities which can be encountered in practical flow fields.
Recent work in this areas has seen the incorporation of real-

gas equilibrium thermodynamics in problems with two independent

10




variables in an almost routine manner. Initial work has begun

on including nonequilibrium thermodynamics in twc independent

31 32 discuss the

33,34

variable problems. The papers by Chu~ " and Broer

formulation of the problem, while the papers by Sedney et.al.

Capiaux and Hashington35, and Wood et.a1.36

also give some initial
results of numerical calculations. To the author's knowledge, no
work has been published on problems involving more than two in-

dependent variables together with nonequilibrium thermodynamics.

The object of this work, therefore, is to formulate the
method of characteristics for general three-dimensional unsteady
flow problems, allowing for the possibility of nonequilibrium
thermodynamics. It is also the purpose of this work to write and
check a working computer program which applies the method to
practical flow problems. It may be impossible or impractical at
this time to write a completely general program, but only those
compromises and approximations which are absolutely necessary to
the writing of a working program will be made. In writing the
program, it will always be borne in mind that, even though some
compromises must be made, they will eventually be removed at a
future time. In this way, the compromises and approximations
can be introduced in such a way that they can be more easily

removed later.

11



CHAPTER 2

THE EQUATIONS FOR THE GENERAL METHOD

The quasi-linear, first-order partial differential equa-
tions for the flow of an inviscid nonequilibrium gas are set
forth in this chapter. A brief review of the theory of
characteristics is presented in Appendix A. The theory is
used in this chapter to derive the characteristic and com-
patibility equations which are required for the method of

characteristics.

2.1 The Equatioms of Change

The equations which govern the flow of a nonequilibrium
gas are the conservation laws, togefher with the equation of
state. In cartesian coordinates (x, y, z, t) they have the
following form.

continuity

.Eji+-“ gji+-lf'é£ 4—“7 §41
3t X 63

(2.1a)
+-j)<}ii + -'-k dﬁﬂh) = O
momentum conservation in x-direction
Oy UM vy, U, 19
3 X oy 2 F3 'B (2.1b)

12



being considered.

being considered

momentum conservation in y-direction

momentum conservation in z-direction

6W+QL+V3W4W6W+_._L O

ot 14 Y 02 f oz

energy conservation

uéh. V'Qb. w\rﬂ\
ox

at 2y o2

_(éem +v9_£+w__ﬁ>=
5 oz

continuity of nth species

gn uan+VaCn Wacn_?;o’h =0

JN)

ot X Y o2

(n‘ 1‘2‘-000

state equation

= h(PJf’Ci’ o..o,CN)

Where in general

(2.1c)

(2.14d)

(2.1e)

(2.1f)

(2.1g)

= On(psPsCrservesCi)  (n=1,2,...,N) (2.1n)

39

13

is a given function determined from the chemistry of the gas
The chemical source function, (- g is a com-
plicated function of the chemical reactions and reaction rates

These are 2N + 6 equations in 2N + 6



unknowns and thus form a complete set.

It should be noted that the species continuity equation
(2.1f) which is sometimes called the rate equation is really
more general than it might appear above. Vibrational relaxza-
tion and element ionization are also described by equations
with the same form as (2.1f). These equations are obtained by
utilizing vibrational energy or electron conceatration instead
of the species mass fractions and by using the proper source

function, G .

In order to eliminate the two algebraic equatioms (2.1g-h)
they must be substituted into equations (2.le) and (2.1f) re-
spectively. (2.le) then takes the form

%E-' %‘E‘a +Z{3§"{3§./(§2 "_%')] =0 (2.11)

wvhere

D . 2 +ué- +v§_ +w-é..

Dt ot oX
and it is understood that 111 other thcr-odynanic variables
are held constant when the enthalpy, h, is partially dif-
ferentiated with respect to any one thermodynamic variable. a
is the speed of sound in the gas with the mass fractions of the
species held constant, or in other words, the frozen speed of

sound. It is given by

Pﬂ‘u 6P]jcn (2.13)
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This is the complete set of partial differential that is to be

solved.

2,2 The Charscteristic Equation

As indicated in Appendix A, the characteristic equation is
found by first introducing a coordinate transformation to (Bl.
Bys 33. ba) coordinates. It is also useful to introduce a new
independent variable with the form

t' * Ut (2.2)

where U 4is an arbitrary constant velocity used to give t' the
dimension of a space coordinate. This allows the time coordinate
and the space coordinates to be treated similarly. Choose the

new coordinates such that
By = constent (2.3)

is a characteristic hypersurface*. The characteristic equa-
tions for the equations of change (2.1) is obtained by evalua-
ting the determinant given in equation (A.5), Appendix A. The

result is

< m‘+v—é‘+w‘a£§‘ Uééi)m
{( éé=+vééz+w_éx uééx)

(2.%)

ot’

A T ] -

* The hypersurface in this case is a three-dimensional
manifold in a four-dimensiomal space.

15



From (2.%) it can be seen that there are two sets of real

characteristic hypersurfaces corresponding to

u—aé +Vé-é"+ufa—é‘+Ué£; (2.5)

o¢’

(uéé‘+v_éi+wéé’+vé§1>

-8 (848 ]= o

Equation (2.5) is the dot product of the vector ¥ (a

(2.6)

gemeralized velocity vector)
V=ué+v—3+w—k + UL (2.7)

vhere 'f, '_f, f. T are the unit vectors along the x, y, 2, t'

coordinate axes respectively, with the vector Val,
Vﬂi z ééi.{*- QA‘T.;. éﬁ"‘-lz-q- ;ﬁ;ﬁ[ (2.8)

v B8 is normal to the characteristic hypersurface. T is tangent
to the particle line or world line, as it is called in relativity,
(see Reference 38, p. 5, and p. 113). Therefore, hypersurfaces
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made up of particle lines are characteristic. Note that the
particle line is a (N + 3)-fold characteristic because the
corresponding term in (2.4) is raised to the N + 3 power. This
property is used to great advantage in the method of character-

istics.

The second set of characteristic hypersurfaces is given by
(2.6). This is a quadratic hypersurface, and is a generalization
of the Mach conoid which appears in three-dimensional steady
supersonic flow and two-dimensional unsteady flow (see Refer-
ence 13, pp. 642-657) and is generally referred to as the Mach
hyperconoid. If the equation of the Mach hyperconoid is written

in the form

By =B (x, 5, 2, t')

the differential equation which defines the hyperconoid is (2.6).
Of course, this equation can not be solved in general for Bl.
but at a particular point (xi, Yir 24> t'i) the hyperconoid is
tangent to the local Mach hypercone and is just an envelope of
sound waves emitted from the point. The equation of the Mach
hypercone is easily derived from the geometry of sound waves
assuming a uniform steady flow with conditions the same every-
where as at the point being considered, and is given by
2 2 X
(x-x;)*+ (y-ui) + (2-2)
1 _ oM v\ 47
P-4 et al T -2y 00X £ S
-2 Vv YT ADY W /s ¢ =
27 (y-yy)(t-t7) - 255 (2 g)(t"-t;) =0
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The Mach hypercone can be used as a local approximation to the

Mach hyperconoid.

2.3 The Compatibility Equatioms

The compatibility equations are obtained by forming a
linear combination of the ::quations of change (2.1) and deter-
mining the linear coefficients such that partial derivatives in
a direction normal to the characteristic surface are eliminated.
The equations for the linear coefficients and compatibility com-
dition are derived in Appendix A and given by (A.9) and (A.10).
There are two sets of compatibility equations, one for each type
of characteristic hypersurface. Actually, there is only one
equation corresponding to the Mach hyperconoid, while there are
N + 3 equations for the particle line. See Reference 38, pp.
106-107 for a discussion of the number of compatibility equa-
tions which correspond to a particular characteristic hyper-

surface.

The linear combination of the equations of change is given
by (A.7) and has the form

C&a“k D 2k L E QUL EM L6 =0

= +0 =5 ¢+
apl K 6’1 kaﬁ, t aﬂ‘ (2.10)

For the given equations of change, (2.1), the compatibility
equation for the Mach hyperconoid has the following terms:

Ty = Axf %é” + A (Ve Vﬂm) (2.11a)
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where

oX 3y 33 it/
and
¥y = Ci when m = 1
Y= Do when m = 2
%, = Ex vhen m = 3
Ye = Fy when m = 4
also

Z /\cm

H'L

(2.11b) ,

(2.11c)

(2.11d)

(2.11e)

(2.11f)

(2.12)

(2.13)

These equations correspond to ecquations (A.8) in Appendix A.

The linear coefficients, A K » are determined by setting Ck

equal to zero and solving the resulting set of equatioms.
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This eliminates derivatives in a direction normal to the

characteristic hypersurface. The result is

M/Ay = -p ai/(w VA.) (2.14a)
M/ =-p %L/(V'Vﬂi) (2.14b)
Wy =9 /(7. vk (2.160)
M/ = -1 (2.140)

A‘#l‘\/Ai aCh/QP 5 (n‘ 1,-.--, N) (2.14e)

vhen equations (2.11) through (2.14) are substituted into (2.10),
the following compatibility equation for the Mach hyperconoid

results.

> §§M[9§"(V-Vﬂs) - %(V-780)

ms g
é&n bﬁ va
a,e 3y (V'Vﬂi)‘ XQL(V'V'GMZ

[__én(v.v,ei)- %é‘(v-%)j

+_£ %513 L (7. +VBw)(V+ 78y)

(_émééz + BndBe 28,06, )]

LY 63 6_5 3 3

Lewi/ e 2 o] = o

——

(2.15)
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where

Bl = constant

is the characteristic Mach hyperconoid. Note that derivatives

of p and S, do not appear in the equationm.

As mentioned above, there are N + 3 compatibility equations
for the particle line, but only N + 1 of these equations are
needed for the method of characteristics. These could be ob-
tained in a manner similar to the procedure just used to obtain
equation (2.15). However, because the equations sought do not
have derivatives in a direction normal to the particle line and
thus involve derivatives along the particle line only, it is
simpler to use this property to choose them by inspection fiom

the original partial differential equatioms.

The substantial derivative

Dt 2t/
is “he derivative of a dependent variable following a fluid

D . ux 2 d
_U6X+V'£3 +w-“+U

particle, so if ; is taken as a coordinate along the particle line

in the (x, y, z, t') space, equations (2.1f) can be written

fVﬁEH = 0, (h=1,...«N)  (2.16)

oL

wvhere

z
V = \/u‘+v"+ wt + U
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These are N of the compatibility equations along the particle
line. One additional relation is needed. The energy equation,
wvhich can be written as (2.1f) or as (2.11), meets this need.
The energy equation can be written in a somewhat simpler form if
the specific entropy is introduced. The entropy is a function
of the thermodynamic variables and the mass fractions of species

S = S(P’f’c"’..'.’cﬂ> (2.17)

Dp . O_(ép) D apl Dc..(gg)
Ot bt os Cn neld Dt \ 9¢ $595Cun

vhere the subocripto indicate the variables held constant in
the partial differentiations. Substituting for Dp/Dt in (2.11)
and utilizing another form of the expression for the frozen

speed of souud

¢ . (2
4 (v)f)S,c., (2.18a)
the following is obtained X
e
N om—
'31’)'~ Ds __S/kn -BL 5 (3% .08, #h
e, Ut g-:' O | \Enkupcon (SE)M.' %

Substituting for Dc /Dt from (2.1f) and introducing the £ co-
ordinate gives

is. S ebarci
6 psen S
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Equation (2.18¢) can also be written in terms of the chemical
potential of the specles, y,, and the temperature, T, (see
Reference 39, equation (21) ).

N
fTVa‘% = —n§;~(;«..c.,) (2.184)

Bquations (2.16) and {2.18c) are the required compatibility

relations for the particle line.

2.4 The Nonequilibrium Terms

A8 was mentioned above in Section 2.1, the chemical source
function is a complicated function of the exact chemical
reactions being considered and their reaction rates. The
reaction rates, in turn, can be a function of temperature.

The thermodynamic functions

h-h (p’ .P ? cl, s e 0y ON)
8 =8 (p,'f » Cyy seves °N)

can also be complicated functions of the mass fractions.
Specific forms of these various functions are not considered
here as they vary with the type of reactions being considered.
The general forms of the reaction rates in certain simple
cases can be obtained analytically, but in practice for most
reactions, they must be determined experimentally. DBecause
of this, many of the functional relationships are unknown, or

at least uncertain at the present time. Therefore, only
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general functional forms are used here. This in no way
limits the results of the method of characteristics formu-
lated here. When a specific case 1s being considered, it
is merely a matter of substituting the proper functional
relations in the appropriate equations in order to obtain
the governing partial differential equations. Note that

we are referring to the partial differential equations here.
The solution of the equivalent finite difference equations
is by no means simple, as is pointed out in Section 3.2

of the next chapter.
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CHAPTER 3

THE ELEMENTS OF THE INTEGRATION PROCEDURE

In this chapter, the partial differential equations devel-
oped in Chapter 2 are written in finite difference form and the
numerical procedures for solving the resulting equations are
presented. The process involves choosing a finite difference
network and then developing the finite difference equations

which correspond to it.

3.1 The Choice of the Network Configuration

The method of characteristics for two independent variables
has been used extensively and involves rather simple geometrical
principles. In considering more than two independent variables,
the geometry of the characteristic hypersurfaces becomes more
complicated and some fundamental changes have to be made to ex-
tend the method to multi-variable problems. First, we shall
consider the extensions required to go from two to three in-
dependent variables after which the extensions to four variables

can be more easily determined.

Consider the geometry of the characteristic lines for two
independent variables as shown in Figure 1. If the initial
data are given on the line PIP2 at points Pl and Py, there 1is
only one possible characteristic net available to determine

point P3. This is because only two characteristic lines pass

25



through each point and the only possible adjacent intersection
on the right side on the initial data line is at point P3. In-
troducing the streamline or particle line, which is also a
characteristic line, does not allow other network configuration
either. Hence, in obtaining the solution by marching to the
right from the initial data line PlP2 there is only one possible

characteristic net which can be used.

This 1is not the case in problems involving three independent
variables. When the extra variable is added, an extra ''degree
of freedom" enters which allows a choice in the net configuration.
This can best be seen by referring to Figure 2. One sheet of the
Mach conoid (e.g. in the downstream or positive time direction)
through a point P is depicted. This conoid is a special case of
the second characteristic surface given by (2.6), but with one
of the independent variables omitted. This Mach conoid is just
the envelope of all the local infinitesimal Mach cones. As
shom in Figure 3, the local Mach cones are tangent to the Mach
conoid at every point on its surface. A line on the Mach conoid
which is everywhere tangent to the generators of the local Mach
cones, is termed bicharacteristic and is shown in Figure 2. It
is seen that there is a single parameter family of bicharacter-
istics on the conoid surface. The parameter defining a bi-
characteristic might be chosen as the angle # shown in Figure
2.

Next, it is useful to introduce the concept of character-

istic surfaces corresponding to a curve. Consider a specified
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curve PQ shown in Figure 4 together with the conoids correspond-
ing to each point on the curve. The envelopes of the upper and
lower portions of the conoids are the characteristic surfaces

corresponding to the curve PQ. Note that the lines of tangency

of these surfaces with the conoids are the bicharacteristics.

Now, returning to Figure 2, consider the normal vector
N which is normal to the conoid surface at P and hence, is
noimal to the tangent to the bicharacteristic at P. N 1s also
normal to one of two characteristic surfaces corresponding to a
line through P and normal to N. Thus for each normal vector and
bicharacteristic, there is at least one characteristic surface
corresponding to a line through P. There is at least a single
parameter family of such surfaces through every point, P.
Finite difference net configurations can be made up of these
surfaces and because of the availability of an infinite number
of such surfaces through each point, there is an additional

"degree of freedom'" in the choice of the net.

It is a simple extension to reason that when a fourth
independent variable is included, a second degree of freedom in
the choice of the net configuration is added. This is because,
corresponding to the characteristic surfaces, characteristic
hypersurfaces (three-dimensional manifolds in the four-space)
could be obtained at each point, and a two parameter family of
such hypersurfaces would be available. There would then be a
double infinity of hypersurfaces to choose from in making up a

net configuration.
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With this understanding of the generalization of the finite
difference net to problems involving three and four independent
variables, the choice of a specific net configuration can now be
attempted. Again, consider the three independent variable case
before trying the more complicated four variable problem. Various

23 has reviewed

network configurations can be proposed. Fowell
several networks which have been proposed and in some cases,
utilized by various people. We will not go into the details

of the networks here, but will give a very brief description of
each and compare their advantages and disadvantages. For further
details, the reader is referred to Fowell and the original papers
wvhich first described each network.

Thornhi111®

Fowell has termed the tetrahedral characteristic line network and

first proposed two network configurations which

the tetrahadral characteristic surface network. The nomenclature
introduced by Fowell is adopted here. These networks are shown
in Figures 5 and 7. A minimum of three points is required in
the initial surface to calculate conditions at a new point off
the surface. In the tetrahedral characteristic line network,
three Mach cones through the three initial points, Py, Py, and
P3, are utilized to form the net. A mutual intersection point
of the three cones is the new point at which the flow proper-
ties are to be calculated. The generators of the cones which
pass through the intersection point are approximations to bi-
characteristics. The compatibility equations can be written in
finite difference form along these bicharacteristics and then
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utilized to determine the flow properties at the new point.

If this network is considered from the standpoint of numerical
stability, however, it is found to be unstable (see Appendix
B). For this reason, this writer proposes the modified
tetrahedral characteristic line network shown in Figure 6.

In the modified network, it is proposed that the triangle
formed by the three initial points be inscribed with a circle,
and the points of tangency of the circle with the triangle, P12’
P23, and P31, be utilized in exactly the same way as the initial
points, Pl, Pz, and P3, for the unmodified network. The prop-
erties at the points P12’ P23, and P31 might be obtained by
linear interpolation between the initial points or a higher order
interpolation scheme might be utilized in the initial surface.
The addition of the procedure of inscribing the circle within
the triangle assures numerical stability for this network (see

Appendix B).

=
«

The tetrahedral characteristic surface network also uses
the minimum of three points in the initial surface to form the
net. The lines passing through each pair of points are used to
define characteristic surfaces. The mutual intersection point
of the three inward leaning characteristic surfaces is utilized
as the new point, P,. The characteristic conoid through P,
opening toward the initial surface is tangent to the character-
istic surfaces along bicharacteristics as shown in Figure 7.
The points P12’ P23, and P31 at the base of the bicharacteristics
in the initial surface are utilized in the finite difference
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equations and the flow properties at these points must be deter-
mined by interpolation in the initial surface.

26 18 have proposed a nctwork made up of

Ferrari™ and Sauer
characteristic surfaces and two orthogonal families of reference
planes as shown in Figure 8. This network of intersections of
reference planes with characteristic surfaces utilizes two
families of coordinate planes (e.g. x = constant and z = constant)
as depicted in Figure 8. The points Py» Py, P3 and P, in the
initial surface are used to calculate the flow at the new points
Py and P, which are located at the intersections of a "left
running" characteristic surface from P,P,, a "right running"
characteristic surface from P3P4 and a specified x = K co-
ordinate plane. The flow properties at Ps, for instance, are
obtained from equations for the variations of flow properties
along the lines PIP5 and P3P5 in the characteristic surface.

The third equation is obtained by considering the variation in

the initial surface (along PP, or P3P4) and relating it to the
variations along PP, and P3P5. The flow properties at P, are
obtained similarly, but note that the base point P4 will, in
general, have to be moved in an iteration to Pg in order to

cause P, to fall on the x = K coordinate plane. This will re-
quire interpolation or extrapolation in the initial surface in

order to find the flow properties at Ps.

The prismatic network of characteristic surfaces was intro-
duced by Coburn and Dolphl’ and refined by Holt?0. It 1s shown
in Pigure 9. This network is similar to the network of
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intersections of reference planes with characteristic surfaces
except that bicharacteristics are used in integrating in the
characteristic surface rathea than the intersections with
ortHogonal coordinate planes. This network also requires that
the flow be known on a surface other than the initial surface
such as surface P2P4P6 in the figure. This might be a plane
of symmetry, but it seems to limit the useful application Af
the network. The flow is determined at the new point P5 by
solving equations written along the lines PIPS’ PSP5 and P6P5.

Butler28 has proposed a network and method which is not
precisely the method of characteristics, but is more of a com-
bination of the standard finite difference approach and the
method of characteristics in the spirit of the method of
Hartroe6 mentioned in Chaptér‘l. Fowell termed this the
pentahedral bicharacteristic l}ne network. As shown in Figure
10, the coordinates of the new point Po are chosen,and the
Mach cone is projected back toward tgé initial surface. Four
bicharacteristics, one more than the minimum number required,
are used in determining the flow properties. The addition of
the fourth equation allows the elimination of the partial deriva-
tives of the flow properties at the new point. The flow pro-
perties at base points, Pl’ PZ, P3 and Pa, which lie in the
initial surface, must be obtained by interpolation. Note that
the location of the bicharacteristics is not arbitrary, but is
determined by the condition for the elimination of the partial

derivatives so that the simplification of eliminating some
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derivatives is traded for the complication in determining the
location of the bicharacteristics and the addition of an extra
equation.

24 40

and Schaetz =~ have proposed methods which utilize

Sauer
what they call "near Characteristics', but which are very
similar to the prismatic network of characteristic surfaces and
the network of intersections of reference planes with character-
istic surfaces discussed above. It is felt that the near
characteristic networks have advantages and disadvantages
similar to those discussed above for the prismatic and reference

plane networks.

Fowell has discussed in detail, the advantages and draw-
backs of each of the networks outlined above. We only summarize
here, his discussion adding a point about stability of which he
was not aware. In general, three points can be used to compare
the networks. They are: (1) Is interpolation required in the
initial surface? This is to be avoided because it can introduce
inaccuracy. (2) Do the base points in the initial surface move
about as the solution is {terated to higher order in the step
size? If the points do move, interpolation is required. (3) Are
the equations to be solved, written along bicharacteristic curves?
41

The formal proofs of existence and uniqueness given by Titt

apply only for integration along bicharacteristics.

Interpolation is required for all the networks except the
tetrahedral characteristic line network. Unfortunately, it is
numerically unstable. The modified tetrahedral characteristic
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line network requires only one interpolation so that it is the

next best. The others require considerably more interpclation.

The base points must be moved for the last three networks
outlined above and shown in Figures 8, 9, and 10. They are

fixed for the first three networks.

Finally, on the third point, bicharacteristics are used
in all but the network of intersections of reference planes
with characteristic surfaces. It should be noted, however,

30 have used this net and have been success-

that Morretti et.al.
ful in obtaining practical results so that the argument for
using bicharacteristics is not clearly established. It should
also be noted that the new points are obtained on equally spaced
coordinate surfaces using this net so that boundary conditions

can te more easily handled in some problems.

There are other advantages and disadvantages of these net-
work configurations that cannot be presented here because of
space limitations, but the major points have been discussed
above. Fowell felt that the tetrahedral characteristic line
network was the most favorable and, at least in a relative sense,
that its advantages outweighed its disadvantages. With the dis-
covery of the numerical instability in this network, this writer
believes that the modified tetrahedral characteristic line net-
work is now the favored approach. Admittedly, this sort of
reasoning is very qualitative, but it appears to be the best that
can be done short of programming all of the networks and com-

paring the results they give for a test problem. Of course, the
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latter suggestion is out of the question practically.

Now that we have seen the difficulty in choosing a net-
work configuration for problems involving three independent
variables, it should be apparent that choosing a network for
a four variable problem is even more difficult. First of all,
our inability to "picture' the geometry of a four variable
space complicates the choice. This does not make the task
impossible, however, because the process can still be approached
on a mathematical basis. It might be expected that a general-
ization of the modified tetrahedral characteristic line network
would also be a logical, advantageous network to use in four
independent variables. Proceeding with this point of view, we

can devise the generalized network.

Consider four points, Py» Py, P3 and Pa lying in the
initial hypersurface. Four is the minimum number of points re-
quired to determine the flow properties at the new point PS.
First, corresponding to the circle inscribed . within the
triangle in the three-variable networks, we inscribe a sphere
within the tetrahedron formed by the initial points in the
initial hypersurface. The four points of tangency of the sphere
with the tetrahedron labeled P123, P124’ P134 and P234 in the
"representation" in Figure l1(a) are used as the base points
for four Mach hypercanes shown in Figure il(b). The flow
properties at these four points can be obtained by interpola-
tion in the initial hypersurface. The equation of the Mach

hypercones (2.9) is a second order algebraic equation in four
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unknowns. This equation written for each of the four inter-
mediate base points (1 = 1, 2, 3, 4) gives four equations in
four unknowns which can be solved for the coordinates of the
intersection point, Pg. The compatibility equation (2.15)

can be written in finite difference form along the four lines
from the intermediate base points to the new intersection
point. This gives four equations to determine four flow prop-
erties at the new point, for example, u, v, v, and p. The re-
maining flow properties at the new point, such as the entropy,
s, and the species mass fractions, c,» are determined from the
compatibility equations (2.16) and (2.18c) which apply along
the particle line through the new point projected back to its
intersection with the initial hypersurface. The flow proper-
ties at the base of the particle line in the initial hyper-

surface must also be obtained by interpolation.

This completes the discussion of the network configuration
to be used, but before proceeding to the details of the finite
difference equations, it should be pointed out that new points
on various types of boundaries must also be calculated. Points
on shock waves, on body surfaces, on contact surfaces, and on
other discontinuities which might arise in flow fields of
interest must also be calculated. The networks described above
are for what might be called field points, which are in the
interior of flow fields away from the boundaries and interior
discontinuities. For the flow fields of interest here, at
least two other types of points must be calculated. They are

points which lie on a body surface and points which lie on an
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exterior shock wave surface. By exterior shock wave surface,
we mean a surface beyond which the flow is known or un-
disturbed. Interior secondary shock waves will not be con-
sidered in this initial study, although they can be calculated
with some added effort. The three types of points to be con-
sidered here, are shown in the three-dimensional representation
of the four-space in Figure 12 for the flow in the nose region

of a blunt body moving at a supersonic velocity.

Note that in several of the figures, three-dimensional
"representations'" are used for the four-dimensional space. ~
Thus, a two-dimensional surface may be drawn in a figure, but
it may represent a hypersurface and will be labeled accordingly
as in Figure 12 where the body and shock hypersurface are so
labeled. Surfaces depicted in the figures may indicate a sur-
face or they may represent a hypersurface, but lines depicted
in the figures always represent lines. In Figure 12, the
initial hypersurface is represented by the hyperplane t' = 0
(the initial steady flow).

3.2 The Field Point Procedure

In this section, the details of determining the coordinates
and flow properties at a new point in the field are presented.
The solution of a new field point requires the completion of
four steps. First, the intermediate base points must be located
and the flow properties at each point determined. The location
of the new field point is then determined and as the third step,
the flow properties at the new point must be obtained. Finally,
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a convergent iteration scheme must be established which will
determine the location and flow properties at the new point
to second-order accuracy in the step size. The details of

each of the steps follows.

Step 1
The four base points determine a tetrahedron within which

a sphere is to be inscribed. The tangency points are utilized
as intermediate base points from which the Mach hypercones are
projected. The flow properties at the tangency points must be
obtained by interpolationm.

First, the calculation is simplified by transforming to a
set of cartesian coordinates (x*, y*, z¥, t*) in which the t*
coordinates of the four points ure equal. This is possible
because the four points cannot lie in more than a three-dimen-
sional subspace of the four-space. In this subspace, the planes

which are the faces of the tetrahedron can be written in the form

A‘ K‘+B,: 5’ "’Cii“ = l (l:'i,,,,,4) (3.1a)
The sphere has the equation
2 2 3
(x*-x3) + (5'-3:) +(@*-27) =R (3.1b)

Finally, the normal vector to the sphere must be parallel to
the normal to each of the faces of the tetrahedron at each point

of tangency. This condition is given by the following equatioms.
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A; / ﬂ,, » (X(‘—X:)/’-ﬁs,o.,) (l:'l,...,4) (3.1c)

B;/ Npl =(5?‘5:)/W=rh-l ("‘1»-“»‘0 (3.1d)

where

2 2 2 'k
N| = (AF + B + C{) (3.1¢)
R
ﬁml = [(’fi" x:)z*(ﬂi".‘ﬁ:)z*‘ ("-c“ 2: )zJ (3.1f)

The third components of the normal vectors are automatically
equal because of the normalization. Equations (3.la-d) apply
at each of the points of tangency, and thus these four equa-
tions written for each of the four points of tangency give 16
equations for the sixteen unknowns, x*i, y*i, ’*1 (1=1, 2,
3, &), x*q> Y*g» =%, and R.

This set of equations can be solved numerically by using
a Newton iteration scheme (sometimes termed the Newton-Raphson
algorithm, see anidus‘z, p. 288). This scheme requires a first
estimate of the roots of the equations. These can be taken as
the center of each face of the tetrahedron for the tangency
points t*i, 7*1’ ’*1' the center of the tetrahedron for the
center of the sphere t*o, x*o, ‘*0 and the average distance
from the center of each face to the center of the tetrahedron

for the radius of the sphere R.

After the coordinates of the tangency points are deter-
mined in the (x*, y*, z*, t®*) coordinates, the inverse
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{
' transformation is used to return to the (x, y, z, t') system.

1 The flow properties at the tangency points must be obtained
: by interpolation. The simplest procedure would be to linearly
fnterpolate between the three corner points on uchﬁ face of

the tetrahedron. This could be done in the following manner.

Starting in the (x*, y*, z¥, t*) coordinates for each

+, z+) coordinates. Drop the

plane face, transform to (x+, y
t* coordinate and work in the subspace because the t¥* co-

ordinates of all poin:ts being considered are equal. Consider
the face P1P2P3 in Figure 11(a). In the transformation to the
(x+, y+, z+) system the origin is located at P; and the =

axis aligned with the line P1P2 in the following equations:

X+=[(X‘-X,‘)Cosé r (2% 2,‘)50\ B_JCoS a2 (3.2a)
+ (y*-uyf) =in g
yt= (( *_yf)cos &-[(xx)cos 6 42% 2;)5:"4]3”@;&89'(3 2b)
+[(2%-2)cos 6- (k*-X{) sin6]sin ¥
2= [(28)0s0 - (% x)sin8lesst ~{(y*-yl)cos $ (3.2¢)
-[{x‘-Xz)CosQ +(e -21)5m 9] s ¢}sm ¥

where

tant = Bt 'ZI)COSQ ()(3 'X;)sm 9]/{(3’ 760$¢
“[(K, X;)CaSB +(2 f1)30ﬂ9J5|n ¢} (3.24)

fan = (L -91)/[(x5- K0 essb+ (2f-28)sme] (320
tan b = @3-20)/( - x1)

(3.2f)

39



Note that

X:=O UI’-O Etz"b
+ +

3130 £;=O
™

2y = @)

so that P,, P,, P3 and P123 all lie in the(i+, y+) plane.
Interpolating in this plane with f representing a typical flow
property, the property at the tangency point is given by
- +
‘p - (!;"‘A) x# + ('ct 'cu)_ ("l-fi) x!
v 13
3 3; X3 Y3

+
128 xz ny 9!11 + b8 (3.3)

The coordinates and flow properties for the intermediate

base points have been determined and thus the first step of the

field point solution is complete.

Step 2
The coordinates of the new field point are obtained by

simultaneocusly solving the equations of four Mach hypercones
(2.9) which eminate from the four intermediate base points
determined in Step 1 above. The equations can be written in

" the form .
(=x Y4 (g -y )e (2 -2 )+ (t)) (e v S @) T
-9 Y ’ vy . ’ w; L e (3.4a)
2 X )W-t)-2 5 (y-yie-t) -2 - m) () = ©
vhere (1 = 1, 2, 3, 4), which designates each of the inter-
mediate base points. These are four equations of second degree
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in four unknowns and, in general, have 16 roots. Only the
closest root to the initial hypersurface in the positive time

direction is desired.

To solve (3.4a), consider it rewritten and expanded in

the following form:
Flyee) = R p-a% +(3 y®) S
+e-#) & 3‘ (e t"yi +,L(,<-,4»fa*r“'

dx*
+ - @ o 3% F, © ¢ F (3.4b)
3 (x )(lj Y — 4 3 (x-x%)(2- f)ax“

aF(‘)

+0¢Ooo =O
where

F-(O) - F- (xm (.j) 2(0)) t/b))

(o)
o ) (0) (o) 4’(o)
—61 = _ L ( X 2 j -t )

and the superscript in parentheses indicates an estimate of
the root or a step in an iteration process. Now, an iteration

might be carried out 'using the following type of equations

(h-1) e
X("): xh 1 aK ':]lh): 5\ 1)* 45

2= 2% a2 ™o t'M)+ at’ (3.4c)

wvhere for example

ax = (x-x®)

in (3.4b). O4Ox can then be obtained by truncating (3.4b) at

some point and solving for Ax. A first estimate of the root

(x(°) (o) _(o)

y Y IR s t'(o)) must be available to start the process.
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Fowe1123

second order derivatives in (3.4b) must be included to assure

found that, for reasonable first estimates, the

convergence. Fowell refers to this as a second-order Newton
procedure wliere second-order probably refers to the inclusion
of second-order derivatives. Actually, the Newton algorithm
includes only the first order derivatives and is accurate to
second order in the error term Ax. The inclusion of the
second-order derivatives is similar to the Richmond iteration
procedure (see aniduol'z, P 292) and is good to third order
in ox.

When the second-order derivatives are included, Fowell
suggests iterating the following equations to obtain the
correction tctn.

Fos “b'k Ao | atWgF
axég éxé& 2 Jxdt’
+A5 u[ o™y of 4 a2™ +At’” 3F )
2 o' T ot 3} T
o[ 3F , ax9F L &P 2F L atPaF ]
+o2 + ¢ + 45 9tF
[3* 2 dzix 'z:fa:ag STat
3 aMEE | ayPtR | a2 ,_(n) 2F;
T 7 zaa%'ég 2 woe| - ©

Values of szero can be taken as first estimates of the cor-

(3.44d)

rections. These are substituted into the terms in brackets
and the resulting linear equations can be solved for a new
value of the corrections. These corrections are then sub-
stituted into the bracketed terms and the process repeated
until convergence is obtained. The corrections are then
used in (3.4c) to obtain new values of the coordinates.
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These new coordinates are in turn used to re-evaluate Fi and
its derivatives in (3.4d), and the entire process is repeated.

Thus, the procedure involves a double iteration.

This procedure suggested by Fowell was utilized in the
calculations carried out for this study, but it should be
pointed out that, by following Richmond's iteration process
more closely, one iteration required in the above double itera-
tion can be eliminated. If (3.4b) is truncated after the first

order derivatives, we obtain

F aF, 3F: ¢ oFi
FaeaxEoaysf aadfi at/fi oo 4
. AKX + 89 65 ¥ Y . * ot’ (3:5%)

These equations can be solved for the corrections, and used to
eliminate the corrections appearing in the brackets in (3.4d).
The corrections outside the brackets are retained. These new
equations can then be explicitly solved for the corrections so
that iteration is unnecessary. This second procedure is a

little less accurate in determining the correction but eliminates
one iteration, though at the expense of introducing more com-
plicated equations. This may be a more efficient procedure,

but it is very difficult to determine definitely short of pro-

gramming and comparing the two schemes.

Following Fowell, we obtain a first estimate of the
P
desired root of (3.4a) with the following reasoning. Consider
all four hypercones to be identical and defined by properties

which are averages of the properties of‘phe actual hypercones.
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From a point an equal distance €rom the four intermediate base
points lying in the initial hyperplane, project a line in the

)

direction of the average generalized velocity, vave‘
The first estimate of the location of the new field point lies
out along this line in the positiv; time direction at a distance
equal to d cot 4 where A is an average Mach angle for the cones
and d is the distance from one intermediate base po.nt to the
point located an equal distance from the four intermediate base
points. This reasoning results in the following equations for

the first estimates of the coordinates of the new field point.
u
x(o) - Jave 4 + X,

€ Aove
5(:) = Mave 4 4 Ye
Aave (3.4f)

2‘:): H.‘V‘d ¥ 2

Agve

t’w: U d + te
& fave

where, for example,

Use = %(u1+ul+us+ uq)

and the numbered subscripts indicate each of the intermediate
base points. Also

- 4
. B r X A ¢ /7 \a 2
d = [("c"xi) +(ye ":ji) + ('Zc "‘21) +(te "tl)J
the ¢ subscripts indicate the coordinates of the point lying
in the initial hyperplane an equal distance from the inter-

mediate base points. These are determined from the following

equations

Ay




o m—

e < —

(K-1) "+ (Ye-da)* + (2 - 22)™s (b0 - )™
= (ke )t +(Ye- o)+ (2e2) + (te-)”
= (ke X 4 (- yo)'+ (2e- 2,) (te- ts)
= (ke -%)" + (ye -yl (Ye-yo )+ (te-t4)
Ako + By +C2, + Dty = 1
vhere the last equation is the equation of the initial hyper-

plane containing the four intermediate base points.

Thus, with the first estimate from (3.4f) and the double
iteration process described by equations (3.4c) and (3.4d), the
coordinates of the new field point can be obtained.

Step 3

The next step is to determine the flow properties at the
new field point. The compatibility equations (2.15), (2.16),
and (2.18c), in finite difference form, are used to determine
the flow properties. In order to utilize these equations, the
p-coordinates and ﬁ -coordinate must be determined. A rep-
resentation of a portion of the field point network is depicted
in Figure 13. The four intermediate base points are now re-.
designated Pl’ P2’ P3, and Pa for simplicity, while PS is the
new field point. P is the point on the initial hyperplane from
which the particle line through P5 passes.

Briefly, four flow properties at P, are determined by
using equation (2.15) written in finite difference form along

the four lines from the base points to the new field point.
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These four equations can be solved for ug, vs, v; and pc. The
velocity components give the direction cosines of the general-
ized velocity V which is tangent to the particle line. A line
with direction cosines equal to the direction cosines of V 1s
then projected back until it intersects the initial hyper-
surface. This intersection point is Pg-. The compatibility
equations (2.16) and (2.18c) along the line P6P5 in finite

difference form determine the remaining flow properties at Py .

The transformation needed to explicitly write the com-
patibility equation (2.15) has only one restriction put upon it
by the partial differential equations and it is that the
characteristic equation (2.6) must be satisfied. It is probably
best to take the transformation to be linear and orthogonal.
This does not mean that the simplest form of the required trans-
formation is given by the orghogonal transformation. Quite to
the contrary, nomorthogonal transformations could be simpler,
but they are not easily determined analytically or numerically.

16 presents a nonorthogonal transformation

For exauwple, Thornhill
for two-dimensional unsteady flow which is quite simply expressed.
THis transformation was obtained by considering the geometry of
the characteristics surfaces in the three-space. Unfortunately,
a direct application of the same procedure to the four-space is
not possible because of the added geometrical complications of

the additional coordinate.

We proceed to develop the linear orthogonal transformation

which can be written in matrix notation as
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r'x R:L
{ ‘g = [Q‘J} :: (3.5)
d A

The orthogonality property gives

[Q‘J]-i - [O‘J]T - [aji] (3.6)

The Bl-coordinate has been taken normal to the Mach hyperconoid
and, hence, is normal to the line PiPS at the point Pi (1«1,
2, 3, 4). The B,-coordinate is aligned in the direction along
PiPS' Foom the work of 'momh11116 and Bruhn and Haack27, it 1is
determined that VB, and V8, should have the following
forms
-—h , - , , ==
VA& =cosP i + sin pcosf‘j +sin@sin? &

- (%,Cos O+ I}}fsiWcosWA"!j[s/n @sin hg)j (3.70)
VA = (% +c°5¢)f+ (-;—r +SinP Cos ‘f)j
+(—g+sin05fn$)'[z = 'g 1

where @ and S‘ are parameters, und it is easily verified
by substitution that V B, satisfies the characteristic equa-

tion (2.6). Also, it is easily shown that

V,gi 'V,ﬁ,_ =0

Utilizing (3.7a-b), the complete transformation is determined
in the following manner. Equation (3.5) is rewritten in the
following form
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Awik x

vhere

1/K =
1/K; =
1/Ky =
1/Ky =

KA KE KL KQ
KB KF KM KR
KiC K6 KN K, S

KO K KP KT

A*+ B* +c* + D*
E2+F* +6> + H'
L* +M* +N* + p?
Qe+ R+ ST+ T

(3.8a)

(308b)
(3.8¢)
(3.84)

(3.8¢)

There are still three degrees of freedom left in oriemting

the f-coordinates, so three terms can be chosen arbitrarily.

The choices made here are

P=S =1} Ts0

(3.9)

The B)-coordinate is to be aligned with P,P; so equating the

52 terms to the direction cosines of PiPs gives

wher

K2 E
K, F
K. 6
Ka H

g (ks - %)™+ (ys - yai‘* (26 -2.)+ (¢;- ¢, )

= (Xg-%;)/ &
- (3:‘5&)/2
- (?,"2;)/2
= (te-ti)/2

A8

(3010‘)
(3.10b)
(3.10¢)

(3.10d) .

(3.10e)



Now using equations (3.7), (3.9), (3.10) and the orthogonality
conditions, the terms in Q“ are determined with the following

equations
R= U/a; (3.11a)
E= H(g-X;)/ (ts-¢) (3.11b)
P = Hiye-Yi)/(te-t") (3.11c)
6= H(ag-2;)/(ts-¢5) (3.114)
A= E - (u;/a;) (3.11e)
B= F - (vi/d) (3.11f)
c=6 = (w;7a;) (3.11g)
De -(Au; + Bvi+Cwt +4&;)/V (3.11h)
Q= (BG -CF)/(AF -BE) (3.111)
R = (CE-AG)/(AF - BE) (3.113)
L=[CF-B6 +(D6-CH)R]/® (3.11k)
M=[A6-CE +(CH-DG)Q)/ D (3.111)
N = (BE -AF + (DF -BH)Q + (AH-DE)R]/ & (3.11m)
where <

&= (B6-CF)Q + (CE - AG)R (3.11n)

These equations uniquely determine the transformation at a
particular intermediate base point. Using (3.6) and (3.8a),

it can be seen that
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-Séxt-.KiA —a-gi—Kl e o o o o

X
so that all the partial derivatives from the transformation in
(2.15) are knowm.

%e = K,E

The compatibility equation (2.15) is put in finite dif-
ference form by substituting the following approximate expres-
sion for the partial derivatives along the line from P, to Ps.

oy
oy & (ue -w) /2 (3.12)
Aa
Similar nxpressions are utilized for the derivatives of v,

v, and p.

A scheme must also be devised to numerically evaluate the
derivatives in the P,- and B, -directions. This is ome of the
fundamental differences between problems with two independent
variables where there are no partial derivatives left to be
evaluated at this point, and problems with more than two independ-
ent variables. These partisl derivatives can be evaluated using
the following equations.

M _ UKk LUy dy 2, / 3.1
OB Y] 8/9»\ éjéﬁm 32 épn o’ aﬂ"‘(m 34) e

vhere from the orthogonality of the transformation



X . ¥m dy _ a3z _dm, 9fm (3.13b)

3Bm oK’ aﬂ.. 2y 1 B 22 u..\ at’

and the other partial derivatives can be obtained from equations
of the form

(e -ut) = 3 (1) + S (g y0) -
) ’ / ' ’
+g-“i(i.,-2£> +g—‘g,(t,-t£) (¢ 1'”'4)

As a first estimate in the iteration procedure described in

Step 4 below, s can be taken as
(o)
“S = (U1+qz + Us + u,)/‘{ (3.13d)

In & similar manner, the derivatives of v, v, and p.can be

determined.

It should be pointed out that in writing equation (3.13¢c)
it is assumed that the partial derivatives of the form Qu /a)( ,
éu/ég , u/d2 , and du/dt’  can be approximated as
constants over the network. The derivatives ou/3d4,, are not
considered constant over the network in (3.13a), however, because
the transformation and, hence, the derivatives given by (3.13b)

are calculated for each intermediate base point.

With the equations given above, all the terms in (2.15) can
be evaluated. The last term which includes the chemical source
function is evaluated at least initially at each of the inter-
mediate base points where all of the flow properties are knowm.
Thus, with { = 1, 2, 3 and 4, equation (2.15) gives four linear
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algebraic equations which can be solved for the four unknowns,
Ugy Vg» Wg and Pse

The coordinates of the base point, PG' are determined by the
intersection of a line through P, with direction cosines equal
to those of V and the hyperplane through the four intermediate
base points, Pl’ ’2’ P3 and Pa. The equations which give these
coordinates, are the equation of the hyperplane

Ax + 35 +Ca+DtY =1 (3.14a)

and the equations of the line

X-Kse o ‘51_'_5_",_-. 2 -2 _ ?_’_'__é;' (3.14b-d)
Usg Ve Ws v

This set of linear equations is easily solved for the coordinates
of ’6‘ The flow field properties at Pg can be determined by
linear interpolation between the four intermediate base points
in the ini.:?nl hyperplane. First, transform coordinates to the
x*, y*, g%, t* coordinates where the t* coordinates are all equal
to the same constant. Then, a general flow property can be
written in the form

-‘ = -C(x‘, 3‘} 2.‘)= Ex‘-&ﬁs"wﬁa‘-pﬁ (3.15)

and the ¥, coefficients can be determined by substituting the
coordinates and flow properties of the four intermediate base



points. Then the flow properties at Pg are easily determined
by substituting its coordinates.

When the flow properties at Py are knowm, the compatibility
equations along the particle line, (2.16) and (2.18¢c), are used
to determine the remaining flow properties at Ps. For this pur-
pose, these aquations might be put in finite difference form
by substituting

3%‘. = (Cng - c_,.)/x (hel,..,N) (3.16a)

-3-%.- = (ss - 55)/}( (3.16b)
vhere

A= (ks xe)™4 (ye -ys) + (26 - 2.>z+ (¢e-t))" (6o

(2.16) and (2.18¢c) can then be solved for s and 8ge

It should be noted that in introducing the approximations

of equations (3.16), we assume that c_ and s do not vary more

n
rapidly from the initial hyperplane to the new point than u, v,

v, and p. In many nonequilibrium flows, c_ and s do vary rapidly

n
along the particle line so that in these cases, it may be ad-
visable to integrate equations (2.16) and (2.18c) in several
steps as proposed by Ferri ct.¢1“3 and utilized in the calcula-
tions of Wood ct.11.36  The pressure can be assumed to vary
linearly along the particle line and the one-dimensional or
streamtube spproximations allow a Runge-Kutta technique, for

example, to be used to integrate the equations from P6 to Ps.
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Sedney and Gerber3u iave also noted that utilizing entropy in
nonequilibrium calculations can lead to large computation errors
so that it might be advisable in some cases to use another
thermodynamic variable, such as temperature, in place of the
more customary quantity, entropy. A note of warning might be
inserted here to indicate that the numerical intezration of the
reaction rate equations, can be difficult especially near
equilibrium conditions. The numerical integration of such
"stiff" equations is just beginning to b handled adequately

at the present time.

Step 4
The final step is to set up an iteéeration process to increase

the accuracy of the integration procedure. This is done by
repeating steps 2 and 3, but using average values of the flow
field properties. In equation (2.15), for example, the flow
properties Ug, V4r Wy, Py and a, are replaced by average

values which have the form

(re 1) () ;
o = '*”s )/2 (¢=.1,...,4) (3.17)

In equations (2.16) and (2.18c), and hence, also in (3.14)

the following form of average values 1is used.

(h+d) (hed) ™)
Uy = Us ¥ Uy //2 (3.18)

In the iteration process, average values of the flow properties

are used everywhere except in the interpolation procedure on the
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initial hypersurface and for the initial conditions in the
integration of the compatibility equations. The iteration

process is continued until

(h) (r-1)
s = &

(n-1

Psm o Pf i
2 °

to within prolcribcd limig; or unti) they are equal to the
ability of the computer to determine them wutilizing a finite
number of digits.

The iteration process described above, is similar to
the modified Euler's method which is sometimes referred to as

uz’ p. 88) for ordinmary

Heun's first method (see Lapidus
differential equations. When applied to ordinary differem-
tial equations, the truncation error is third-order in the
step size, so that the process includes terms of second order
in the step size. The process as applied here to the partial
differential equations, does omit some terms which are second
order in the step size throughthe assumption that the partial
derivatives in (3.13¢c), are constant over the network. It
can only be hoped that these neglected terms do not appre-
ciably increase the order of the truncation error because it
appears that there is no way to include the neglected second-
order terms without changing the network by adding additiomnal

28 |2 done.

base points, as Butler
This completes the description of the fourth step and
also the entire field point procddure. Next, the procedure

to calculate a new point on a body hypersurface is considered.
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3.3 The Body Point Procedure

The same four steps required for the field point procedure
are also required for the body point procedure. The body is

assumed to be specified by an equation of the form

@(K,lj)i‘t)/:: o (3.19)

With this formulation, rather general body shapes and motions
can be considered. However, it is assumed here that the body
hypersurface has no corners (i.e., no discontinuities in first
order derivatives). Special techniques are required for
handling the expansion fans and secondary shock waves which

can arise because of body cormers.

Three base points in the initial hypersurface adjacent
to the body hypersurface, and three points which lie both in
the body and the initial hypersurfaces are used to determine

a new point on the body hypersurface in the following steps.

Step 1

As in the first step in the field point procedure, inter-
mediate base points must be properly located, and the flow
proparties at them determined by interpolation. Three inter-
mediate base points must be located such that the domain of
dependence of the difference scheme contains the domain of
dependence of the partial differential equations to ensure

numerical stability. This was done by inscribing a sphere



within the tetrahedron in the field point procedure. A
similar procedure could be proposed here, but it was found

in doing two-dimensional unsteady flows, that some experimen-
tation was necessary in order to properly locate the inter-
mediate base points, so that a stable solution was obtained.
Thus, it is probably better to refer to the details of the
two-dimensional unsteady procedure given in Chapter 4, Section
4.3 in the description of the PATCH subroutine, and to state
that some experimentation might be necessary in locating the

intermediate base points.

Step 2

The coordinates of the new body point are determined by
simultaneously solving the equation of the body hypersurface
(3.19) together with the equations for three Mach hypercones
through the three intermediate base points determined in Step
l. The equations can be solved by using the third-order Rich-
mond iteration procedure presented in Step 2 of the field point

procedure.

A representation of a portion of the body point network
is shown in Figure 14. Pl’ P2 and P3 are the intermediate base
points, and P6, P7 and P8 are the base points in the body hyper-
surface. The new body point {s located at Py, while P5 is the
point of intersection of the particle line from Pu, projected

back to the plane determined by P6' P7 and PB'
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Step 3

The flow properties at Pu are determined in a manner
similar to Step 3 in the field point procedure. Three com-
patibility equations can be obtained in the form of (2.15),
corresponding to the three intermediate base points. The
same coordinate transformation as used for the field point

can be used here. The equation for the boundary condition

3B“+ABV+aBU+§_§U-

.20
¥ ¥ o vz (3.20)

replaces the fourth compatibility equation used in the field
point procedure. Ome slight change is necessary to evaluate
the derivatives in the 63- and By-directions im (2.15)
because only three and not four intermediate base points are
available. One of the base points on the body hypersurface
must be used as the fourth point. From the three compat-
ability equations and the boundary condition, the flow

. properties Uys Vs Wy and P, are determined.

Next , the particle line on the body hypersurface must be
projected back to obtain its intersection with the initial
hypersurface. The three body base points, P6’ P7 and P8 in
Figure 14, determine a plane (not a hyperplane) which is ex-

pressed in the following form.

Ax + Cy + Dz = 1 (3.21a)

Ey + F2 + Gt' = 1 (3.21b)



The six coefficients can be determined by substituting the
coordinates of the three points into the equations, and
solving the resulting set of six equations. This plane is

an approximation to the surface which is the intersection of
the initial hypersurface and the body hypersurface. The point
5, which is the intersection of the particle line with the
plane (3.21), is determined by considering a second plane con-

taining Pu, the generalized velocity V and the vector normal

to the body hypersurface at P,, which is given by

- Q8= , dBT 8 28 7
= — + —K +
Na Ax 63 J 32 k ot 1 (3.22)
This plane can also be expressed in the form
Hx + Iy + Jz = 1 (3.23a)
Ky + Lz : Nt' =1 (3.23b)

The coordinates of P5 are obtained by solving equations (3.21)
and (3.23). The intersection of the two planes results in a
unique point, because the plane (3.23) contains'ﬁh, which 1is
normal to the body hypersurface. Hence, the intersection of
(3.23) with the body hypersurface is the parcicle line, and
because (3.21) also lies within the body hypersurface, the

intersection is a single point.

After the particle line base point P5 is determined, the
flow properties at it are determined by interpolation in the
initial hypersurface. The compatibility equations (2.16) and

(2.18c) along the particle line are used to determine the
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remaining flow properties at the new body point in the same

manner as in the field point procedure.

Step &
Steps 2 and 3 above are iterated to convergence in

exactly the same manner as in the field point procedure.

3.4 The Shock Point Procedure

The shock point procedure is the most complicated of the
three procedures considered here. Briefly, the shock point
procedure can be summarized as follows. Given a point which
lies both on the shock and initial hypersurfaces, together with
the complete flow field incident on the shock, the location of
a nev point on the shock hypersurface must be found. The flow
properties behind the shock at the new point and the orien-
tation of the shock hypersurface through the point must also
be determined. As in the body point procedure, three base
points in the initial hypersurface adjacent to the shock
hypersurface are assumed given. Actually only one shock base
point which lies both on the shock and initial hypersurfaces is
required to determine the new shock point, but an additional two
shock base points will be required in Step 1 to determine inter-
mediate base points as was necessary for the body point.

The shock point procedure has the same four steps as the
field and body procedures: (1) locate and determine the flow

properties at the intermediate base points, (2) locate the
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position of the new point, (3) calculate the flow properties
at the point, and (4) iterate the solution to second order

in the step size.

Step 1

This step is almost exactly the same as Step 1 of the
body point procedure. Also, as in the body point solution, a
detailed description of a process to locate the intermediate
base points could be given here, but because some experimen-
tation will probably be necessary to assure numerical stability,
the reader is referred to procedures used for two-dimensional
unsteady flow in Chapter 4, which probably can be simply

generalized to the four variable case.

Step 2

A representation of a portion of the shock point network
is shown in Figure 15. Pl’ P2 and P3 are the three inter-
mediate base points which were determined in Step 1. Pu is
the base point which lies in both the shock and initial hyper-
surfaces. The new shock point that is to be determined is

labeled PS.

The first estimate for the location of P5 is obtained by
determining the intersection of the shock hypersurface and the
three Mach hypercones from the intermediate base points. The
shock hypersurface is initially approximated by the hyperplane

normal to ﬁ.u and passing through Pu. i;n is the unit vector
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=" - -l -l

Ny =Ns, @ +Ng J+Ns“k +N,t,qX (3.24)

The shock hyperplane then has the form

Nay, (K-X4) + m(g-y4)+N,~(a—2.)+N=t,4(t'-t.’.)= O (3.25)

The coordinates of P5 can be obtained by using the third order

Richmond iteration scheme as in the field and body point

procedures.

Step 3

The procedure for determining the flow properties behind
the shock hypersurface at the new shock point is more involved
than the corresponding procedures for the field and body points.

First, notice that the shock hypersurfece at P_ has been approx-

5
imated by the hyperplane, (3.25), so that in the first step of

b

the interation N.s - l.n.

The flow incident on the shock wave at P_ is given, so

5
and c¢ are known or can be deter-

Ugsr Vi Yoy Pgyr Poy n5+

mined by intcrpolation. The plus-sign subscript indicates a
flow property in the incident stresm while a minus-sign sub-
script indicates flow properties just behind the shock hyper-
surface. The shock wave equations (Rankine-Hugoniot equations)

are used to determine the properties behind the shock.
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Introducing the following notation

Gu, = (up Ns, + 2 N‘s""‘é N3‘+ UN,() (3.26a)

where

@2‘-‘- (N;:*”;‘- N;;+ NsZ)/(NistZ-*NSZ) (3.26b)

and
Vt = ?": (Ns;r st:j--r N;!l() @ + VT: (3.26¢)

the equations for a moving shock wave can be writtenm in the form

P4 ?w = f— . (3.26d)
Pt P*?Nt = Pt P-Ha (3.26e)

i .2 2
he + 2 %0, = h. + %‘?u (3.26f)
\/.r' = VT. (3.26g)
Ch, = Cn. (h=1,...,N) (3.26h)
The state equation is also needed.
h'-' H (P,P,C1,....,Cu) (3.261)

These equations cannot be solved explicitly for the properties
behind the shock in terms of the properties in front of the
shock, because the state equation cannot always be written

explicitly in the form of an equation. The shock wave equations
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must be solved numerically for a generdl problem, such as

the flow of a real gas (e.g., for air, see Hoocknlh~).

After qy_ has been determine’ using (3.26), the velo-

city components are given by the following equations.

. = Uy + Ne & (9, - %) (3.27a)
o= Ut Ny @ (9u-90,) (3.27b)
w. = w3 + Ns, @(qu.-9u.) (3.27¢)

Thus, all the flow properties at P_ behind the shock hyper-

5
surfaces can be determined.

Step &

Equations (3.26) and (3.27) determine an estimate of the

flow properties at P_ behind the shock wave, but there are

5
three compatibility equations which hold along the lines
PIPS, P2P5 and P3P5. In general, the properties determined
above will not satisfy these compability equations. However,
a new estimate for the shock hypersurface normal vector, i;S
can be made such that the conditions behind the shock tend

toward the satisfaction of the compatibility equationms.

The new estimate of i; is obtained as follows. The flow

5
properties which appear in the compatibility equation (2.15)
are expanded in Taylor series,which is trumcated after the

fizst order derivatives

(1]



(m) h)
ur Ve Y o (Ys AN + Ol AN;,‘-% FAN( (3.28)
5 € Mg E (oM, éN,.’
vhere minus-sign aublcriptl have b;cn omitted. Similar equa-

5(n+1)’ "5(n+1) and ps(n+1). The
is given by

tions can be written for v

nev estimate of i}S

N = (Ney+ ol ) (~=s, Mg )5
M )R+ (N AT
f

The three correction terms Alszg R A!ﬁ?% and Alszg are

determined by substituting (3.28) and its counterparts for

(3.29)

v, w, and p into the three compatibility equations, (2.15),
corresponding to Pl’ Pz and P3. The partial derivatives of

u, v, v, and p with respect to N N__ and N.z must be

sx’ s

determined before the correction tcrnoycan be obtained.

These derivatives may be obtained from equations (3.26) and
(3.27), but they cannot be determined analytically unless

the state equation can be written explicitly. They can be
determined numerically, and perhaps, this is the simplest way

even when they can be determined analytically. For example,

a derivative could be calculated using the following approxima-

tion. . . ~ .
o P+ sNs L) -p ()
ms‘ - SNSK

vhere & N _ is a small change in N .- After the three
corrections are determined, the fourth correction is obtained

from
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2 2
(ng“’ AN"") 2 (Nsy‘ t4 Nsﬁb’) (3.30)
+ (N’!s+ “ N;ls)t+ (N’(c +4 N’t's)z = 1

This procedure is repeated in an iteration process as
in the field and body point procedures. 1In Step 1, iah is

replaced by an average valu. given by

< (ned) ' (Mi)
N"*S -;_[(N,,(N )" +(N‘54 Su¢ )J
(noi) (hed), = (3.31)
#(Nst Ny )+ (Mo + M )T |
wvhere ﬁ's(n+1) is given by (3.29). In Step 2, note that ﬁ5(°+1)

A

is not equal to N (n+l) but is given by (3.29). Average

4,5
»
values are used in the hypercone and compatibility equations

just as in the field and body point procedures.

3.5 The Initial Value Hypersurface

The Cauchy problem being considered here requires that the
flow properties be completely specified on an initial hyper-
surface. This means that a three-dimensional flow field must
be specified before the complete four-dimensional flow field
can be solved. By no means, is this a trivial problem. Of

~course, the type of initial value hypersurface required for

a given problea will depend on the specific problem. A few

of the properties which seem unique to the general method of
characteristics and wvhich might be used to determine the

initial hypersurface are mentioned in the following discussion.
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In most practical problems of unsteady three-dimensional
flow, the initial hypersurface is the initial steady three-
dimensional flow. Thus, the steady flow is required before
the unsteady flow can be determined. This brings to mind,
specializing the general method of characteristics to solve
the three-dimensional steady flow. This is discussed in the
next section. Only steady supersonic flow can be solved by
the method of characteristics, because the equations of steady
subsonic flow are not hyperbolic, but this is one way in which
the initial hypersurface might be determined for supersonic

flow.

Certain steady flows might also be solved in the follow-
ing manner. Consider the hypersonic flow about a blunt nosed
body as depicted in Figure 16. The flow in the initial hyper-
surface, t' = 0, may be odly an estimate of the exact flow. The
flow can then be calculated in the t'-direction with the body
surface unchanged with time. The initial estimate can be con-
sidered physically as the result of some body motion for t' < 0.
After a certain amount of time has passed, the transient decays
and steady flow is attained at t' = t's. For t' > c'., the
flow field does not change with time. In this way, the steady
flow can be calculated starting from only an estimate of the
flow field. Note that the initial estimate must not violate
the equations of change of the gas. Hence, the initial esti-
mate is not arbitrary, but must be physically realizable.
Obtaining such an estimate for nonequilibrium flow may not be
simple, but perhaps rather crude initial estimates would still
vyleld the physically correct results. This could be

ascertalined by solving test cases.
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The difficulty in obtaining an initial estimate which is
compatible with the equations of change could be avoided by
using the following technique. Start with an initial steady
flow which is ksown exactly. For example, the hypersonic flow
about a sphericslly capped cylinder might be taken as the known
steady flow as shown in Figure 17. The spherical cap can then
be distorted into some other shape, perhaps ellipsoidal, and
after the transient decays, the steady flow about the dis-
torted body is obtained. In the same way, the known initial
steady flow might be taken as the supersonic flow about a conre
at zero angle of attack. The cone can then be rotated to a
finite angle of attack, and after the transient decays, the
steady flow about a cone at an arbitrary angle of attack is
obtained. In this way, the steady supersonic flow about some

rather arbitrary bodies can be calculated.

It should be mentioned that the general method of
characteristics for unsteady flow applies to subsonic as well
as supersonic flows. Given the initial steady subsonic flow,
the flow-field history can be computed within the domain of
determinacy of the initial data. The domain of deterwinacy is
limited in the t'-direction by the amount of initial data giveu
in the initial hypersurface, but the calculation can be carried
as far in the t'-direction as desired, merely by enlarging the
region of the initial data. For practical reasons discussed
in Chapter 5, the method of characteristics for unsteady flows
will probably never be used for subsonic flows unless the flow

is desired for only a very short period of time.
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3.6 Simplifying the General Procedure

It will not always be necessary to consider the three-
dimensional unsteady flow of a nonequilibrium gas. The method
of characteristics can also be applied to simpler problems.
Means for specializing the general procedure can be very use-
ful and should be kept in mind as the general procedure is
developed. Specifically, three simplifications are considered
here. They are listed below, together with a brief discussion

of how the simplification is carried out.

Nonequilibrium flow simplified to equilibrium flow.

In this case, the simplification is accomplished by eliminating

the following variables and operators P Dcn/Dt'

and O /bcn. Also, the equilibrium speed of sound, a,, should
be substituted for the frozen speed of sound. This should be a

rather simple process.

Three-dimensional unateady flow simplified to two-

dimensional unsteady flow. Here, one of the space coordinates

is to be dropped so, for instance, the following terms are set
equal to zero: z, 6‘/65, v, By and 3 //aeu. In the co-
ordinate transformation, § 1is also set equal to zero. This

too scems to be a rather simple process.

Three-dimensional unsteady flow simplified to three-

dimensional steady flow. In this case, the specialization {s

not easily accomplished. First, time must be eliminated from

the problem by setting t' and o /dt' equal to zero. The
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characteristic equation, (2.6) changes to

(u _é1+v'-é*+w.£*) [(éé‘) (65) dé‘)t) (3.32a)

8o that
&
ur+ vty wt > a (3.32b)

for the problem to remain hyperbolic. The equation of the

Mach cone changu to
(vrewr-at)x-x) "+ Wewab)y- Y. )*
+ (U vio a?) (2-20)" - 20 () (Y- Yo (3.32¢)
= qu(x-x;)(z-e;)- va'(tj-g;)(z'é;) =0
Note that (3.32c) is not obtained from (2.9) merely by setting

t' equal to zero. In order for the Mach hypercone to be written

in a general form so that it can be easily simplified, the

characteristic equation, (2.6), must be written in the form

>3 b, ok

= 0 .32d
'\‘1 M‘l a«m 6«" (3 3 )

where
(Ais 0y Kasa) = (X34, 2,t")

and then the Mach hypercone can be written in the form

4
> i A, (%= Om; ) (%0 - %) = O (3.32e)

hei med

wvhere A'n is the matrix made up of the cofactors of the deter-

minant of b_ . When t' is set equal to zero in (3.32d), equation
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(3.32¢) will give the correct equation for the Mach cone.

Another cospiication in specializing to steady flow is that
the coordinate transformation, (3.8a), cannot be easily sim-
plified to steady flow. Hence, a different transformation such
as the one used by Ferr113 and Fou01123 is required for the
steady flow. Because of the above difficulties, it might be
easier to develop a procedure specifically for three-dimensional
steady flow, such as the work reported by Fowell, than to try
to specialize three-dimensional unsteady flow. This specula-
tion can be verified when the general procedure is programmed

for the digital computer.
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CHAPTER &
THE PROGRAMMING OF THE PROCEDURE

In this chapter, the details of the programming of the
method of characteristics are presented. This {8 the portion
of this study which pertains to the second part of the object
stated initially, that is, the proving (or disproving) of the
feasibility of the method by programming and utilizing the
method to solve practical flow fields. This is by no means a

minor portion of the total project.

5.1 Practical Considerations

Many factors were considered in deciding exactly what
programs could be feasibly attempted with presently available
high speed electronic digital computers. First, the limitations
of the IEM 7094 to be utilized for the calculations had to be
considered. This computer has approximately 32,000 words of
magnetic core storage available. About half of this storage
should be set aside for the programs, which leaves 17,000 words
for the storage of data on the initial hypersurface. It has
been found that the new data can be writtem over the initial
data as the calculation progresses if a few temporary storage
locations are used. In this way, no more than one hypersurface
of data needs to be stored at one time. A few simple calcula-
tions can check the adequacy of this storage for various
problems. For three-dimensional unsteady nomequilibrium flow,

(9 + W) words of data (the values of x, y, z, t', u, v, v, p,

72



s, and cn) must be stored for each point. If N is eight, for
example, data could be stored for 1000 points. In the initial
hypersurface, this would give 10 points in a typical linear
dimension, which hardly seems adequate to describe a practical
flow field. If equilibrium flow is considerad, 1900 points

could be stored for the initial hypersurface, but still this

would give only 12 points in a typical linear dimension. Finally,
consider a two-dimensional unsteady equilibrium flow which re-
quires seven words of data at a point. This would allow 2500
points in the initial surface, or 50 points in a typical linear

dimension. This is a more reasonable number of points to describe

a flow field.

Another machine limitation is the operating speed of the
computer. Even though calculations can now be carried out in a
time on the order of microseconds, programmers have been able to
demand more and more of computers,as in the problem considered
here. Computation time must be considered, because this is what
determined the financial cost of carrying out the calculatiom.

A quantitative estimate of operating time is not possible before
the programs are written, but it is possible to draw some quali-
tative conclusions. One result from two-dimensional steady flow
calculations, is that nonequilibrium and real gas thermodynamic
subprograms tend to require relatively larger amounts of computer
operating time. The complicated iterations discussed in Chapter
3 will require large amounts of operating time, but these cannot

be eliminated without reducing the calculations to rather triviasl
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problems. Thus, it appears advigable to consider a perfect gas

as a first case to keep operating time reasonable.

The programs were written in the FORTRAN II computer
language by Mark Sussman, and the author. Neither of the pro-
grammers vas familiar with the FORTRAN language when the project
was begun. Some, or perhaps, most of the programs if writtem in
a more machine oriented language, such as FAP would require less
storage and less operating time. However, due to the inexperience
of the programmers, it was decided that the more mathematically
oriented FORTRAN language could be utilized in a much shorter
time period.

With the above mentioned considerations in mind, it was
decided that the general problem formulated in Chapter 3 must
be limited slightly, in order to write some useful programs at
the present time. These limitations have been incorporated in
such a way that the difficulty in removing them should not be
great, or should not require any fundamental changes in the
programs. First, the problem was limited to two-dimensional
unsteady flow as discussed in Section 3.6. This reduces the
storage required to a reasonable quantity, and is rather
simply carried through. This restriction is also rather easily
removed and in most equations (and therefore, also in program
statements), the neglected terms which would contain the third

space coordinate can be re-introduced by inspectiom.

To keep computing times reasonadble, it was decided to

consider only a perfact gas in this initial study. Equilibrium
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real gas thermodynamics can be introduced merely by replacing
the perfect gas thermodynamic subroutines with their real gas
counterparts. The addition of nonequilibrium effects will re-
quire different chemical and thermodynamic programs, and the
modification of some of the programs to include the integration

of the specids continuity equation along the streamlime.

-

There is also an argument for simplifying the problem,
other than because of programming restrictions. The problem
should be simplified as much as possible while still retaining
its major features, so that complexities from auxiliary sources
such as thermodynamic subroutines do not overshadow the more
important effects which are to be investigated. Thus, initially
one space dimension can be dropped and a perfect gas considered.
Then, after the programs for this problem are working the further
complexities of the third space dimension and more complicated

thermodynamics can be added.

The problem to be considered is still very challenging,
because three independent variables are to be considered. Few
people as yet have had success in using the method of character-
istics for problems in three independent variables. Only Butlet28

and 'l‘albol:u5 utilizing Butler's formulation have considered two-

dimensional unsteady flow. Butler's approach is not exactly the
method of characteristics as pointed out in Section 3.1, and it
is not obvious that it can be easily extended to four independent
variables. The resulting programs will also allow the checking

of some of the proposed calculation schemes discussed in Section

3.5.
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b2 The General Approach

Three subroutines that determine the location and flow
properties at the field, body,and shock points are the heart
of the programmed procedure. These are the most important sub-
routines and all of the other subroutines and the executive pro-
gram (or main program, as it is termed in programming manuals)
merely support and assist these subroutines in calculating the

flow fields.

The executive program organizes the points in the initial
surface and calls the three principle subroutines to calculate
nev points on the next surface. It then accepts the results
from the subroutines and organizes the data in the next surface.
These curfaces will be referred to as time surfaces, because
they are usually close to being t' = constant planes. The more
general a type of flow the executive program can handle; the
more complicated and sophisticated it must be. In this initial
study, the executive was kept as simple as possible and because
of this, it is very much oriented to the particular type of flow
field being solved. Hence, if a completely different type of
flow is to be calculated, a new executive program would be

required.

It should be pointed out that the programs were written
with the three basic subroutines for field, shock, and body
points being supported by all othe¢r programs, because these
are the fundamental elements in the¢ calculation, and are

universal to all inviscid flow probiems. Thus, they can be
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utilized in all other flow calculations of this type, merely

by supplying the proper supporting programs. If the calculation
of a new field, shock, and body points had been combined in
larger programs together with other supporting calculations,
oriented toward specific flow fields and boundary conditioms,
they could not have been utilized as readily in different

flow calculations.

The general program organization is shown in Figure 18,
in the form of a calling sequence diagram. The three sub-
routines to calculatie field, body, and shock points have been
given the mnemonic names FLDPT, BDYPT, and SHKPT. The programs
can be divided into four general sections as shown in the
figure. The executive is the first section. In the second
section, there are fou; subroutines which comntrol interpolation,
the number of points in a surface, and reading or writing data
on the tape. The third section has the subroutines which actually
calculate new data points. In the last section, there is only
one subroutine which does an auxiliary interpolation. Three
FORTRAN functions are also utilized. One is named THETA, which
is called by TRUNET and PATCH. The last two functions carry
out the thermodynamic calculations and are called ADET and
ROEDET. A more detailed discussion of each of the subroutines

is given in the next section. ’
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§.3 Datajiled Discussions of the Programs

In the following discussions, only those techniques and

procedures which have not been discussed in Chapter 3 will be
presented. General flow diagrams and complete program listings
are presented in Appendix C. These discussions are intended

to point out the function of the programs, the checking pro-
cedures built into them and any unusual or special techmiques
wvhich were found necessary to insure successful operation. A
knowledge of the FORTRAN I1 programming language and the IBM
7090/9% Data Processing Systems is assumed (see References 46
and 47).

Executive Program

Ar mentioned in Section 4.2, the executive program is

oriented toward solving a particular flow field. The executive
considered here and listed in Appendix C 1is for the flow in

the subsonic, transonic and supersonic regions between a de-
tached shock wave and the surface of a blunt body moving at
high supersonic speed. This program is an improved version of
an earlier program which was used to calculate the flow over

a wedge in . supersonic or hypersonic flow.

This executive reads the data for the initial surface
from a tape where it had been previously written in the proper
order and format. The data is stored in the common portion of
the magnetic core storage in three large arrays, named FLPTSI,
BDPTS1 and SKPTS1 for field, body, and shock points, respectively.
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The executive merely transfers various words of data from these
locations to other locations in the common storage, where the
PATCH, FLDPT, BDYPT and SHKPT subroutines pick up the input data

for their calculations.

Four data cards are read by the executive to specify
auxiliary parameters. The first card contains numbers which
specify what the program is to do on a particular run, as ex-
plained in the listing. Free stream conditions are specified
on the second card and the nondimensionalizing velocity, U,

together with the convergence test values are specified on the

third and fourth cacds.

The organization in the executive calculates data on an
odd numbered surface which contains only field points. It then
uses these points together with the shock and body points from
the initial surface to calculate field, shock, and body points
on an even numbered surface. The detailed organization of the
field points is shown in Figure 19. The new shock and body
points are calculated using two field points from the rows
closest to the shock and body surface on the odd numbered surface.
The body and shock points required as base points are taken from

the even numbered surface.

After the executive has sequencially calculated the
specified number of new time surfaces, it writes the final data
on tape. This data is in such a form, that the executive can

read it from the tape at a later time and continue the calculation.
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This is a FAP coded subroutine which merely positions the
data tape so that the proper data can be read from it or written
upon it. The data is written on the tape in logical records
separated by end of file marks. Each logical record is the
data for one initial surface. SCAN has one integer argument
which specifies the logical record on the tape which is to be

read or written.

ADDROW

As can be seen from Figure 19, one YoM of points is lost
for each step taken to a new surface. It is possible that in
certain flows, such as the blunt body case considered here,
that these points will be spread over a larger area at each
step. The density of the points will then decrease. ADDROW
is used to add more rows of points between the existing boundary
rows by linear interpolation. The rows must have been evenly
spaced by TRUNET before ADDROW is called, because ADDROW assumes
even spacing in doing its calculation,though slignt variation in

spacing can be tolerated by ADDROW.

TRUNET

The location of points on a new surface is a function of
the spacing of the points on the initial surface, the velocity

field and the speed of sound throughout the field. Because the
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last two factors cannot be controlled, the locations of the
points in the new surfaces tend to drift out of their initial
configuration after a few steps to new time surfaces have been
made. TRUNET uses linear interpolation to "true up" the n;t
ia both time and space. It can be called periodically after a

fevw steps to restore the net to its original configuration.

TRUNET is just a slightly different version of the
executive program. It uses an organization similar to the
executives which is shown in Figure 19, but it calculates new
points in a slightly different sequence, such that it can inter-
polate between two even numbered surfaces. TRUNET first inter-
polates in the time direction between corresponding points on
the two surfaces obtaining the data at points on a constant
time<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>